Белки в составе мышц хрящей волос выполняют функцию


Тест Белки 9 класс

Описание слайда:

* ПРОВЕРКА ОТВЕТОВ: 1 вариант 2 вариант 1.Вместо точек проставьте нужные слова: 1)В состав белков входят элементы N,С,О,Н 1) Мономерами белков являются аминокислоты 2) Всего в белках имеется 20 видов аминокислот 2) Основная связь между мономерами белка -пептидная 3) Вторичная структура белка в виде спирали 3) Первичная структура белка в виде цепочки аминокислот,связь пептидная 4) Четвертичная структура белка в виде нескольких связанных глобул 4) Третичная структура белка в виде глобулы. 5) Восстановление природной структуры белка называется ренатурация 5) Разрушение природной структуры белка называется денатурация 2. Какую функцию белков отражают примеры? 6. Ускоряя химические реакции в клетке, белки выполняют каталитическую функцию. 6) Ферменты выполняют каталитическую функцию 7) Белки-гормоны выполняют регуляторную функцию 7) Антитела выполняют защитную функцию. 8) Гемоглобин эритроцитов выполняет транспортную функцию. 8) Белки в составе мышц, хрящей, волос и т.д. выполняют строительную функцию. 9) Сократительные белки выполняют двигательную функцию 10.простые белки 9) Белки клеточных мембран, улавливающие воздействия на них выполняют сигнальную функцию. 10.сложные

Функции белков в организме | Химия онлайн

Функции белков в природе универсальны. Белки входят в состав всех живых организмов. Мышцы, кости, покровные ткани, внутренние органы, хрящи, шерсть, кровь — все это белковые вещества.

Растения синтезируют белки из углекислого газа и воды за счет фотосинтеза. Животные организмы получают, в основном, готовые аминокислоты с пищей и на их базе строят белки своего организма.

Ни один из известных нам живых организмов не обходится без белков. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.

Видеофильм «Функции белков»

Разнообразные функции белков определяются a-аминокислотным составом и строением их высокоорганизованных макромолекул.

1. Каталитическая (ферментативная) функция

Каталитическая функция — одна из основных функций белков. Абсолютно все биохимические процессы в организме протекают в присутствии катализаторов – ферментов. Все известные ферменты представляют собой белковые молекулы.

Белки – это очень мощные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой фермент.

В настоящее время известно свыше 2000 различных ферментов, которые являются биологическими катализаторами.

Например, фермент пепсин расщепляет белки в процессе пищеварения.

Даже такая простая реакция как гидратация углекислого газа катализируется ферментом карбоангидразой.

Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации ДНК и матричного синтеза РНК.

2. Транспортная функция 

Некоторые белки способны присоединять и переносить (транспортировать) различные вещества по крови от одного органа к другому и в пределах клетки.

Белки транспортируют липиды (липопротеиды), углеводы (гликопротеиды), ионы металлов (глобулины), кислород и углекислый газ (гемоглобин), некоторые витамины, гормоны и др.

Например, альбумины крови транспортируют липиды и высшие жирные кислоты (ВЖК), лекарственные вещества, билирубин.

Белок эритроцитов крови гемоглобин соединяется в легких с кислородом, превращаясь в оксигемоглобин. Достигая с током крови органов и тканей, оксигемоглобин расщепляется и отдает кислород, необходимый для обеспечения окислительных процессов в тканях.

Белок миоглобин запасает кислород в мышцах.

Специфические белки-переносчики обеспечивают проникновение минеральных веществ и витаминов через мембраны клеток и субклеточных структур.

3. Защитная функция 

Защитную функцию выполняют специфические белки (антитела — иммуноглобулины), которые вырабатываются иммунной системой организма. Они обеспечивают физическую, химическую и иммунную защиту организма путем связывания и обезвреживания веществ, поступающих в организм или появляющихся в результате жизнедеятельности бактерий и вирусов.

Например, белок плазмы крови фибриноген участвует в свертывании крови (образовывает сгусток). Это защищает организм от потери крови при ранениях.

Альбумины обезвреживают ядовитые вещества (ВЖК и билирубин) в крови.

Антитела, вырабатываемые лимфоцитами, блокируют чужеродные белки. Интерфероны — универсальные противовирусные белки.

Многие живые существа для обеспечения защиты выделяют белки, называемые токсинами, которые в большинстве случаев являются сильными ядами. В свою очередь, некоторые организмы способны вырабатывать антитоксины, которые подавляют действие этих ядов.

4. Сократительная (двигательная) функция

Важным признаком жизни является подвижность, в основе которой лежит данная функция белков, таких как актин и миозин – белки мышц. Кроме мышечных сокращений к этой функции относят изменение форм клеток и субклеточных частиц.

B результате взаимодействия белков происходит передвижение в пространстве, сокращение и расслабление сердца, движение других внутренних органов.

5. Структурная функция

Структурная функция — одна из важнейших функций белков. Белки играют большую роль в формировании всех клеточных структур.

Белки – это строительный материал клеток. Из них построены опорные, мышечные, покровные ткани.

Некоторые из них (коллаген соединительной ткани, кератин волос, ногтей, эластин стенок кровеносных сосудов, фиброин шелка и др.) выполняют почти исключительно структурную функцию.

Кератин синтезируется кожей. Волосы и ногти – это производные кожи.

В комплексе с липидами белки участвуют в построении мембран клеток и внутриклеточных образований.

6. Гормональная (регуляторная) функция 

Регуляторная функция присуща белкам-гормонам (регуляторам). Они регулируют различные физиологические процессы.

Например, наиболее известным гормоном является инсулин, регулирующий содержание глюкозы в крови. При недостатке инсулина в организме возникает заболевание, известное как сахарный диабет.

 Интересно знать!

В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

7. Питательная (запасная) функция

Питательная функция осуществляется резервными белками, которые запасаются в качестве источника энергии и вещества.

Например: казеин, яичный альбумин, белки яйца обеспечивают рост  и развитие плода, а белки молока служат источником питания для новорожденного.

8. Рецепторная (сигнальная) функция

Некоторые белки (белки-рецепторы), встроенные в клеточную мембрану, способны изменять свою структуру под воздействием внешней среды. Так происходит прием сигналов извне и передача информации в клетку.

Например, действие света на сетчатку глаза воспринимается фоторецептором родопсином.

Рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

 9. Энергетическая функция

Белки могут выполнять энергетическую функцию, являясь одним из источников энергии в клетке (после их гидролиза). Обычно белки расходуются на энергетические нужды в крайних случаях, когда исчерпаны запасы углеводов и жиров.

При полном расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии. Но в качестве источника энергии белки используются крайне редко. Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

Белки

Учебно-методический материал по биологии (9 класс) на тему: Тема: « Биохимические свойства белка ».

Слайд 1

Входной контроль по теме: «Белки, состав, структура, функции» (работа на 10-12 минут)

Слайд 2

1 вариант 2 вариант На «3» 1.Вместо точек поставьте нужные слова: А)В состав белков входят элементы:…; А) Мономерами белков являются… ; Б)В белках имеется … видов аминокислот. Б) Основная связь между мономерами белка -… В) Вторичная структура белка в виде … В) Первичная структура белка в виде …; Г) Третичная структура белка в виде…; Г) Гемоглобин имеет … структуру белка; Д) Восстановление природной структуры белка называется…; Д) Разрушение природной структуры белка называется… На выполнение задания - 3 минуты

Слайд 3

На «4» 2. Вместо точек напишите соответствующие функции белков. А) Ускоряя химические реакции в клетке, белки выполняют … функцию. А) Ферменты выполняют … функцию Б) Белки-гормоны выполняют … функцию Б) Антитела выполняют … функцию. В) Гемоглобин выполняет …функцию. В) Белки в составе мышц, хрящей, волос выполняют … функцию. Г) Сократительные белки выполняют … функцию Г) Белки клеточных мембран выполняют… функцию. На выполнение задания – 5 минут

Слайд 4

На «5» 3. Ответьте на один вопрос по выбору. А) Чем можно объяснить огромное разнообразие белков в природе, несмотря на то, что в их состав входят одни и те же аминокислоты? А) Почему для человека опасно повышение температуры тела свыше 41 0 ? Б) Какую структуру могут иметь белки в составе мышц и почему? Б) Какую структуру могут иметь белки в составе сухожилий и почему? В) Чем сходны и чем отличаются простые белки от сложных? В) Какой структурой определяются все особенности строения белка и почему? На выполнение задания – 2 минуты

Слайд 5

ПРОВЕРКА ОТВЕТОВ: 1 вариант 2 вариант 1.Вместо точек проставьте нужные слова: А)В состав белков входят элементы N ,С,О,Н А) Мономерами белков являются аминокислоты Б) Всего в белках имеется 20 видов аминокислот Б) Основная связь между мономерами белка - пептидная В) Вторичная структура белка в виде спирали В) Первичная структура белка в виде цепочки аминокислот Г) Третичная структура белка в виде глобулы Г) Гемоглобин имеет четвертичную структуру белка Д) Восстановление природной структуры белка называется ренатурация Д) Разрушение природной структуры белка называется денатурация 2. Какую функцию белков отражают примеры? А) Ускоряя химические реакции в клетке, белки выполняют каталитическую функцию. А) Ферменты выполняют каталитическую функцию Б) Белки-гормоны выполняют регуляторную функцию Б) Антитела выполняют защитную функцию. В) Гемоглобин эритроцитов выполняет транспортную функцию. В) Белки в составе мышц, хрящей, волос выполняют строительную функцию. Г) Сократительные белки выполняют двигательную функцию Г) Белки клеточных мембран выполняют избирательную функцию.

Слайд 6

Самостоятельная работа по теме: «Синтез белков и клеточный цикл». 9 класс

Слайд 7

1 Вариант Какие условия необходимы для синтеза белка? Что такое трансляция и где она осуществляется? Что такое транскриптон и промотор? 4. Триплет шифрующий одну аминокислоту называется … 5. Что такое клеточный цикл? Каковы его периоды? 6. Чем диплоидный набор хромосом отличается от гаплоидного? 2 Вариант 1. Что такое транскрипция, как осуществляется и где она происходит? 2. Что такое генетический код, кодогенная цепь, антикодон? 3. Какие изменения в ядре клетки происходят в период интерфазы? 4. Что такое митоз и соматические клетки? 5. Где находится генетический материал в эукариотической клетке? 6. Назовите фазы деления и укажите в какой из фаз происходит расхождение хромосом к полюсам.

белки — урок. Биология, Общие биологические закономерности (9–11 класс).

Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты, которые (имея в своём составе карбоксильную и аминогруппы) обладают свойствами кислоты и основания (амфотерны).

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.

Структура белковой молекулы

Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего \(20\) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

 

Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.

 

Разрушение первичной структуры необратимо.

 

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.

Функции белков

  • Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
  • Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).
  • Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
  • Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
  • Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
  • Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении \(1\) г белка до конечных продуктов выделяется \(17,6\) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

 

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://ours-nature.ru/lib/b/book/1063747118/348

что является основными ферментативными функциями рибосомы или углеводов в организме и таблица об этом

Функции белков в природе универсальны. Белки входят в состав всех живых организмов. Мышцы, кости, покровные ткани, внутренние органы, хрящи, шерсть, кровь — все это белковые вещества.

Растения синтезируют белки из углекислого газа и воды за счет фотосинтеза. Животные организмы получают, в основном, готовые аминокислоты с пищей и на их базе строят белки своего организма.

Функции белков в организме

Ни один из известных нам живых организмов не обходится без белков.

Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.

Каталитическая (ферментативная) функция

Каталитическая функция — одна из основных функций белков. Абсолютно все биохимические процессы в организме протекают в присутствии катализаторов – ферментов. Все известные ферменты представляют собой белковые молекулы.

Белки – это очень мощные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой фермент.

В настоящее время известно свыше 2000 различных ферментов, которые являются биологическими катализаторами.

Например, фермент пепсин расщепляет белки в процессе пищеварения.

Даже такая простая реакция как гидратация углекислого газа катализируется ферментом карбоангидразой.

Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации ДНК и матричного синтеза РНК.

Транспортная функция 

Некоторые белки способны присоединять и переносить (транспортировать) различные вещества по крови от одного органа к другому и в пределах клетки.

Белки транспортируют липиды (липопротеиды), углеводы (гликопротеиды), ионы металлов (глобулины), кислород и углекислый газ (гемоглобин), некоторые витамины, гормоны и др. Например, альбумины крови транспортируют липиды и высшие жирные кислоты (ВЖК), лекарственные вещества, билирубин.

Белок эритроцитов крови гемоглобин соединяется в легких с кислородом, превращаясь в оксигемоглобин.

Достигая с током крови органов и тканей, оксигемоглобин расщепляется и отдает кислород, необходимый для обеспечения окислительных процессов в тканях.

Белок миоглобин запасает кислород в мышцах. Специфические белки-переносчики обеспечивают проникновение минеральных веществ и витаминов через мембраны клеток и субклеточных структур.

Защитная функция 

Защитную функцию выполняют специфические белки (антитела — иммуноглобулины), которые вырабатываются иммунной системой организма. Они обеспечивают физическую, химическую и иммунную защиту организма путем связывания и обезвреживания веществ, поступающих в организм или появляющихся в результате жизнедеятельности бактерий и вирусов.

Например, белок плазмы крови фибриноген участвует в свертывании крови (образовывает сгусток). Это защищает организм от потери крови при ранениях. Альбумины обезвреживают ядовитые вещества (ВЖК и билирубин) в крови.

Антитела, вырабатываемые лимфоцитами, блокируют чужеродные белки. Интерфероны — универсальные противовирусные белки.

Многие живые существа для обеспечения защиты выделяют белки, называемые токсинами, которые в большинстве случаев являются сильными ядами. В свою очередь, некоторые организмы способны вырабатывать антитоксины, которые подавляют действие этих ядов.

Сократительная (двигательная) функция

Важным признаком жизни является подвижность, в основе которой лежит данная функция белков, таких как актин и миозин – белки мышц. Кроме мышечных сокращений к этой функции относят изменение форм клеток и субклеточных частиц.

B результате взаимодействия белков происходит передвижение в пространстве, сокращение и расслабление сердца, движение других внутренних органов.

Структурная функция

Структурная функция — одна из важнейших функций белков. Белки играют большую роль в формировании всех клеточных структур.

Белки – это строительный материал клеток. Из них построены опорные, мышечные, покровные ткани.

Некоторые из них (коллаген соединительной ткани, кератин волос, ногтей, эластин стенок кровеносных сосудов, фиброин шелка и др.) выполняют почти исключительно структурную функцию. Кератин синтезируется кожей. Волосы и ногти – это производные кожи.

В комплексе с липидами белки участвуют в построении мембран клеток и внутриклеточных образований.

Гормональная (регуляторная) функция 

Регуляторная функция присуща белкам-гормонам (регуляторам). Они регулируют различные физиологические процессы.

Например, наиболее известным гормоном является инсулин, регулирующий содержание глюкозы в крови. При недостатке инсулина в организме возникает заболевание, известное как сахарный диабет.

Интересно знать! В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

Питательная (запасная) функция

Питательная функция осуществляется резервными белками, которые запасаются в качестве источника энергии и вещества.

Например: казеин, яичный альбумин, белки яйца обеспечивают рост  и развитие плода, а белки молока служат источником питания для новорожденного.

Рецепторная (сигнальная) функция

Некоторые белки (белки-рецепторы), встроенные в клеточную мембрану, способны изменять свою структуру под воздействием внешней среды. Так происходит прием сигналов извне и передача информации в клетку.

Например, действие света на сетчатку глаза воспринимается фоторецептором родопсином.

Рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

Энергетическая функция

Белки могут выполнять энергетическую функцию, являясь одним из источников энергии в клетке (после их гидролиза). Обычно белки расходуются на энергетические нужды в крайних случаях, когда исчерпаны запасы углеводов и жиров.

При полном расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии. Но в качестве источника энергии белки используются крайне редко. Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

Источник: https://himija-online.ru/organicheskaya-ximiya/belki/funkcii-belkov-v-organizme.html

Функции белков в клетке:

  1. Строительная – обусловлена наличием белка во всех клеточных структурах. (Форма всех органелл клетки зависит от структуры белков).
  2. Каталитическая – реакции в клетке без ферментов идут медленно, так как концентрации исходных веществ (субстратов) в клетке малы. Обычно размеры молекул ферментов больше, чем размеры субстратов. Например, молекулярная масса каталазы, разрушающей пероксид водорода Н2О2, равна 250000, а самого пероксида – 34. Активный центр фермента – лишь небольшой участок его молекулы, на котором и происходит сама реакция. Фермент сравнивают с замком, а субстрат – с ключом, так как они должны точно подходить друг другу. Каждая реакция катализируется своим ферментом, однако существуют ферменты, которые катализируют несколько реакций.
  3. Двигательная – все движения обусловлены работой двигательных (сократительных) белков. В мышечных клетках при сокращении нитей более активна внедрённая между волокнами миозина за счёт энергии АТФ.
  4. Транспортная – белок гемоглобин транспортирует кислород и углекислый газ в организме. Через мембраны происходит транспорт различных веществ (сахар, ионы и др.).
  5. Защитная – осуществляется с помощью антител и антигенов. Антитела – белковые структуры β-лимфоцитов избирательно связывающиеся с чужеродными белками и клетками. Антигены – белки на поверхности клетки или в растворе, по которым Т-лимфоциты различают свои клетки и чужеродные. Убитые или ослабленные бактерии и вирусы (вакцины) несут свои антигены. При введении их в организм иммунная система вырабатывает антитела, что препятствует заболеванию.
  6. Энергетическая – белки являются источниками энергии. 1г белка при окислении даёт 17,6 кДж. Белок при разрушении образует СО2, Н2О, Nh4. Аммиак Nh4 ядовит, поэтому в печени он превращается в мочевину и мочевую кислоту.
  7. Регуляторная – пептидные гормоны, выделяемые железами внутренней секреции, изменяют обмен веществ в клетках определенных тканей.

Инсулин активирует захват молекулы глюкозы клеткой и синтез из неё гликогена. Без инсулина клетки голодают, так как не поглощают глюкозу, в результате чего развивается сахарный диабет. Т-лимфоциты передают с помощью белков информацию о чужеродных клетках β-лимфоцитам.

ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Свойства белков так же разнообразны, как и функции. Одни растворяются в воде и образуют коллоидные растворы, другие растворяются в разбавленных растворах солей. Некоторые нерастворимы, например, белки кожи.

ХИМИЧЕСКИЕ СВОЙСТВА

В радикалах АК-остатков белков содержатся различные функциональные группы, способные вступать в химические реакции:

  • восстановления;
  • этерификации;
  • лкилирования;
  • нитрования.

Будучи амфотерным соединением белок реагирует и с кислотами, и со щелочами.

Источник: https://megaobuchalka.ru/9/32081.html

Функции белков

Работа и функции белков лежат в основе структуры любого организма и всех протекающих в нем жизненных реакций. Любые нарушения этих белков приводят к изменению самочувствия и нашего здоровья. Необходимость изучения строения, свойств и видов белков кроется в многообразии их функций.

Первые слова из определения Ф.Энгельсом понятия жизни «Жизнь есть способ существования белковых тел, …. » до сих пор, по прошествии полутора веков, не потеряли своей правильности и актуальности.

Структурная функция

Вещество соединительной ткани и межклеточный матрикс формируют белки коллаген, эластин, кератин, протеогликаны.

Непосредственно участвуют в построении мембран и цитоскелета (интегральные, полуинтегральные и поверхностные белки) – спектрин (поверхностный, основной белок цитоскелета эритроцитов), гликофорин (интегральный, фиксирует спектрин на поверхности).

К данной функции можно отнести участие в создании органелл – рибосомы.

Ферментативная функция

Все ферменты являются белками. В то же время есть данные о существовании рибозимов, т.е. рибонуклеиновых кислот, обладающих каталитической активностью.

Гормональная функция

Регуляцию и согласование обмена веществ в разных клетках организма осуществляют гормоны. Такие гормоны как  инсулин и глюкагон являются белками, все гормоны гипофиза являются пептидами или небольшими белками.

Рецепторная функция

Эта функция заключается в избирательном связывании гормонов, биологически активных веществ и медиаторов на поверхности мембран или внутри клеток.

Транспортная функция

Только белки осуществляют перенос веществ в крови, например, липопротеины (перенос жира), гемоглобин (связывание кислорода), гаптоглобин (транспорт гема), трансферрин (транспорт железа). Белки  транспортируют в крови катионы кальция, магния, железа, меди и другие ионы.

Транспорт веществ через мембраны осуществляют белки — Na+,К+-АТФаза (антинаправленный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки), глюкозные транспортеры.

Резервная функция

В качестве примера депонированного белка можно привести производство и накопление в яйце яичного альбумина. У животных и человека таких специализированных депо нет, но при длительном голодании используются белки мышц, лимфоидных органов, эпителиальных тканей и печени.

Сократительная функция

Существует ряд внутриклеточных белков, предназначенных для изменения формы клетки и движения самой клетки или ее органелл (тубулин, актин, миозин).

Защитная функция

Защитную функцию, предупреждая инфекционный процесс и сохраняя устойчивость организма, выполняют иммуноглобулины крови, факторы системы комплемента (пропердин), при повреждении тканей работают белки свертывающей системы крови — например, фибриноген, протромбин, антигемофильный глобулин. Механическую защиту в виде слизистых и кожи осуществляют коллаген и протеогликаны.

К данной функции также можно отнести поддержание постоянства коллоидно-осмотического давления крови, интерстиция и внутриклеточных пространств, а также иные функции белков крови.

Белковая буферная система участвует в поддержании кислотно-щелочного состояния.

Существуют белки, которые являются предметом особого изучения:

Монеллин – выделен из африканского растения, обладает очень сладким вкусом, не токсичен и не способствует ожирению.

Резилин – обладает почти идеальной эластичностью, составляет „шарниры» в местах прикрепления крыльев насекомых.

Белки со свойствами антифриза обнаружены у антарктических рыб, они предохраняют кровь от замерзания

Источник: https://biokhimija.ru/belki/belki.html

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Каждая клетка живого организма функционирует за счет содержания необходимых компонентов. Они выполняют важную роль, стимулируют обменные процессы и способствуют обновлению.

Особенно важны функции белка в клетке. Органические компоненты могут иметь разный состав, строение, некоторые отличия в жизненном цикле. Сегодня специалисты используют различные методы для исследования молекул и выявления их особенностей.

Что такое белки

Белки представляют собой органические соединения, имеющие различный состав и выполняющие важные функции в организме всех живых существ. Существует несколько видов этих молекул, каждый из которых имеет значение в процессе жизнедеятельности.

Состав

Органические вещества являются высокомолекулярными, поэтому могут включать в свой состав различные аминокислоты и другие соединения. Набор важных компонентов в каждой молекуле закладывается генетическим кодом животного или человека.

Основные компоненты каждой молекулы:

  • углерод;
  • кислород;
  • азот;
  • водород;
  • сера.

Первый компонент обнаруживается в белке в наибольшем количестве, последний — не более 5 % от состава.

История открытия

Первый белок был получен необычным способом. Его выделили из пшеничной муки в виде клейковины. Произошло открытие в 1728 году, сделал его Якопо Беккари, итальянец. В качестве отдельного биологического класса молекулы белка были выделены в XVIII веке после обнародования работ французского ученого и химика Антуана де Фуркруа.

Другие ученые одновременно с французом отметили, что молекулы имеют свойство коагулировать (объединяться) под воздействием некоторых кислот или в процессе нагревания.

На тот момент ученые смогли изучить только альбумин, фибрин и глютен.

Только через 100 лет, в XIX веке, другие исследователи, изучив состав простых белков, отметили, что при нагревании происходит выделение аминокислот. Это помогло сделать вывод, что молекулы включают в себя довольно большое количество важных и разных аминокислот, а состав каждой из них индивидуален.

В 1836 году Мульдер предложил первую структурную формулу белков, основанную на теории радикалов. Он и еще несколько ученых вывели формулу протеинов, что в переводе с греческого означает «первый».

Мульдер также определил почти точную молекулярную массу наиболее простого белка, равную 131 дальтону. Дальтон — единица измерения молекул, называемая еще атомной массой или углеродной единицей.

Позже ученые выявили, что молекулярная масса может быть различной и зависит от состава и структуры органического соединения. В 1880-х годах русский ученый Данилевский изучил пептидные группы и доказал их существование в белковой молекуле. К этому времени большинство аминокислот уже были изучены.

В 1894 году немецкий ученый и физиолог Альбрехт Коссель рассказал о своем предположении. Он считал, что именно аминокислоты являются основными структурными элементами белковой молекулы.

Его теория была подтверждена в начале ХХ века химиком из Германии Эмилем Фишером. Ученый в ходе своего эксперимента доказал, что каждая молекула содержит около 20 аминокислот.

Важность белка в живом организме была признана только в 1926 году благодаря эксперименту американца Джеймса Самнера. После этого начинается активное изучение структур молекулы, выделяются различные виды. В 60—80-ых годах ХХ века исследования продолжаются.

К 2012 году в базе данных насчитывалось около 87 тысяч структур. Сегодня методы изучения молекулы усовершенствованы, поэтому работа в этом направлении продолжается.

Строение

Белок считается макромолекулой, поскольку имеет большой размер и множество составляющих. В строении белков присутствуют разные аминокислоты или их остатки, они чередуются с полипептидными цепями.

В молекулу могут входить следующие аминокислоты:

  • глицин;
  • аланин;
  • изолейцин;
  • серин;
  • лейцин;
  • валин;
  • треонин.

Эти встречаются в составе наиболее часто, сочетаются с пептидными цепями и аминокислотными остатками.

Классификация

Существуют несколько классификаций белков в зависимости от состава, строения, формы, растворимости в воде. Чаще всего молекулы делят на простые и сложные с учетом строения.

К простым относятся следующие:

  1. Альбумины — жизненно необходимы животным и человеку. Содержатся во многих продуктах, хорошо растворяются в воде, соленых жидкостях под воздействием кислот. Являются основной составляющей мышечных тканей в организме, формируют резерв на случай длительного голодания.
  2. Глобулины в воде слабо растворяются. Являются составляющими крови, мышечной ткани, оказывают влияние на свертываемость, выполняют защитную функцию.
  3. Протамины — низкомолекулярные белки, хорошо растворимые в воде. В организме выполняют структурную функцию, являются строительным материалом для мышц и других тканей.
  4. Гистоны — низкомолекулярные вещества, содержат большое количество лизина и аргинина. Принимают участие в формировании структуры молекул ДНК, предупреждают передачу генетической информации к РНК.
  5. Проламины — растительные белки с невысокой пищевой ценностью. Создают в организме резерв.
  6. Глютелины — растительные вещества, принимающие участие в формировании клеточной оболочки. Денатурация происходит в солевых растворах, в воде они не растворимы.
  7. Протеноиды — животные белки, богатые аминокислотами, не растворяются в воде, кислотах, щелочах, солевых жидкостях. Входят в состав костной, хрящевой ткани, связок, сухожилий.

Среди сложных белков выделяют фосфопротеины, гликопротеины, нуклеопротеины, липопротеины, хромопротеины, металлопротеины.

Каждый вид имеет свои особенности:

  1. Фосфопротеины — сложные белки, содержащие остатки фосфорной кислоты, связывающиеся с пептидными цепями. Выполняют в организме защитную, строительную, энергетическую функции.
  2. Гликопротеины — сложные органические компоненты, содержащие углеводный остаток. Принимают участие в выработке ферментов, выполняют защитную и секреторную функции, стимулируют образование важных для жизнедеятельности гормонов.
  3. Нуклеопротеины состоят из нуклеиновых кислот (нуклеотиды), наиболее распространенные РНК и ДНК. Содержатся в мембранах клетки, формируют генетический код человека.
  4. Липопротеины содержат липиды (жиры), присутствуют в лимфе и плазме крови, не растворяются в воде. Выполняют транспортировочную функцию, переносят липиды по всему организму.
  5. Хромопротеины называют «цветными белками». В составе содержат окрашивающий компонент. Участвуют в транспортировке кислорода. Яркий представитель вида — гемоглобин.
  6. Металлопротеины содержат ионы металла в составе. Транспортируют металл в организме, создают его резерв.

Любой из видов играет важную роль в метаболических процессах.

Функции

Различные виды белков выполняют в организме важные функции. При отсутствии основных типов нарушаются все жизненно важные процессы.

Каталитическая

Катализ реакций в организме осуществляется благодаря наличию ферментов, являющихся белками по своему составу и строению. Ферменты помогают расщеплять сложные вещества на простые, облегчают их переработку.

Благодаря этому возможно поступление полезных компонентов ко всем тканям, органам, регенерация клеток, осуществление нормального метаболизма.

Структурная

Осуществляется благодаря коллагену и эластину. Белки являются важным строительным элементом, стимулируют формирование костной ткани, мышц, хрящей, связок и сухожилий.

Выделяют 4 структуры белковой молекулы:

  1. Первичная структура представляет собой последовательность остатков аминокислот, чередующихся с полипептидной цепью. Встречается во многих тканях, на протяжении жизни организма не меняет строения.
  2. Вторичная структура — упорядочивание фрагментов полипептидной цепи, подверженное стабилизации за счет наличия водородных связей.
  3. Третичная структура — строение полипептидной цепи пространственного типа. При детальном рассмотрении можно увидеть, что строение напоминает вторичную структуру, но присутствуют гидрофобные взаимодействия.
  4. Четвертичная структура представляет собой белковое соединение, состоящее из нескольких пептидных цепей в одном комплексе.

Благодаря различной структуре белковых молекул осуществляется построение всех клеток и тканей в организме.

Защитная

Физическая защита осуществляется благодаря наличию в клетках и тканях коллагена, отвечающего за прочность и предотвращающего повреждения. Химическая защита осуществляется благодаря способности белков связывать токсины, выводить их из организма.

Иммунная защита возможна благодаря способности некоторых белков стимулировать образование лимфоцитов, уничтожать вирусы, патогенные микроорганизмы.

Сигнальная и регуляторная

Регуляция всех процессов в клетках осуществляется с участием белков, представленных ферментами. Часто компоненты связываются с другими веществами, стимулируют процессы регенерации, регулируют метаболизм.

Многие внутриклеточные белки осуществляют сигнальную функцию, помогают передавать информацию между тканями, клетками, органами. Обычно сигнальную функцию выполняют белки-гормоны.

Транспортная

Транспортная функция осуществляется в основном за счет белка-гемоглобина. Он доставляет кислород ко всем тканям и клеткам, переправляет в легкие углекислый газ для выведения его наружу. Ученые нашли во всех живых организмах молекулы, напоминающие по строению гемоглобин.

Запасная и моторная

Запасная или резервная функция возможна благодаря наличию в клетке белков, содержащих аминокислоты. Они служат источником питания и энергии при недостаточном поступлении подобных компонентов с пищей.

Моторная или двигательная функция играет важную роль. Разные виды белковых молекул принимают участие в сокращении мышечных волокон, передвижении лейкоцитов и других клеток для обеспечения иммунной защиты.

Свойства

Белковые соединения обладают физическими и химическими свойствами, отличающими их от других молекул.

Физические

Физические свойства позволяют выявить белок среди других соединений в живом организме.

Основными будут следующие:

  • вес молекулы может достигать 1 млн дальтон;
  • при попадании в водный раствор происходит формирование коллоидной системы;
  • в зависимости от кислотности среды отличается заряд белкового соединения;
  • самый крупный сегодня белок — титин.

Молекулярная масса у каждого соединения отличается, определяется разными способами.

Химические

При определенных условиях белковые соединения проявляют свои химические свойства.

Наиболее частыми реакциями будут следующие:

  1. Амфотерность — способность белков в зависимости от условий проявлять основные свойства и кислотные.
  2. Денатурация — изменение биологической активности соединения в результате потери вторичной, третичной или четвертичной структуры. Может быть механической, физической и химической, обратимой и необратимой, полной и неполной.

Химические свойства белков изучаются различными методами для выявления особенностей молекул.

Этапы синтеза белка

Биосинтез белка представляет собой процесс, состоящий из нескольких этапов, в ходе которых происходит созревание соединений. Протекает во всех живых организмах.

Основные этапы синтеза:

  1. Инициация. Образование аминоацеладинелата одновременно с активацией аминокислоты в присутствии АТФ и специфического фермента.
  2. Элонгация. Присоединение образовавшейся кислоты к специфичной тРНК с последующим освобождением аденозинмнофосфата.
  3. Терминация. Связывание соединения аминокислоты и тРНК с рибосомами.
  4. Трансляция. Включение аминокислоты в белковую молекулу с одновременным высвобождением тРНК.

У разных живых организмов процесс может проходить с разной скоростью, но последовательность этапов неизменна.

Методы изучения

Сегодня исследование белковых соединений продолжается в современных лабораториях.

Популярные методы изучения:

  1. Метод клеточной и молекулярной биологии используется с целью фиксирования локализации молекул в клетках, наблюдения за синтезом веществ. Для стимулирования реакции используются антитела. Наблюдение проводится посредством микроскопа. На предметное стекло помещается подготовленный белок и антитела, проводится эксперимент, результаты фиксируются.
  2. Биохимический метод предполагает изучение чистого белка, избавленного от дополнительных компонентов. Для дальнейшего изучения используют центрифугирование, высаливание, электрофокусирование.
  3. Протеомика — наука, изучающая совокупность белковых соединений в составе одной клетки. Для исследования используются специальные приборы, соединения, белковые микрочипы, позволяющие изучать сразу несколько молекул в клетке.

Благодаря новейшим современным методикам возможно прогрессирование науки в области исследования живых клеток и их составляющих.

Биологическое значение

Биологическое значение органических соединений объясняется множеством полезных функций. Компоненты принимают участие во всех жизненно важных процессах в организме, являются незаменимым строительным материалом, стимулируют выработку лимфоцитов, отвечающих за стойкость иммунной системы животного или человека.

При отсутствии сложных белков невозможно образование гормонов, новых клеток и регенерация тканей. Без белковых молекул в организме не осуществляется процесс дыхания, поскольку невозможен перенос кислорода и выведение углекислого газа.

Особенно важное значение имеют белки для человека, поскольку некоторые виды помогают связывать и выводить из организма токсины, вредные соединения. Длительное отсутствие в питании белка приводит к постепенному истощению и смерти организма.

Интересные факты

Некоторые интересные факты о белковых соединениях доказывают важность их в живых организмах.

Наиболее интересными считаются следующие:

  1. Около 50 % от сухого веса организма приходится на белки.
  2. Вирусы почти полностью состоят из этого компонента, некоторые на 95 %.
  3. Более 30 % органических веществ у человека концентрируется в мышцах.
  4. Клетки головного мозга состоят преимущественно из белковых молекул.
  5. Волосы на теле и голове человека представлены ороговевшими клетками, состоящими из белковых молекул.
  6. Недостаток вещества в пище отрицательно отражается на всех процессах.
  7. В более чем 50 % случаев аллергия на белок у человека проявляется в детском возрасте.
  8. Человеку одинаково необходим растительный и животный белок.
  9. Детям белковые соединения необходимы в больших количествах, чем взрослым.
  10. Яичный белок считается наиболее качественным и легко усваивается.

Белки в организме — незаменимый и необходимый ежедневно компонент, позволяющий обеспечивать здоровье и правильное функционирование клеток.

Источник: https://obrazovanie.guru/nauka/biologiya/funktsii-belka.html

Белки хряща - Справочник химика 21

    Мукополисахариды типа гиалуроновой кислоты стекловидной жидкости глаза и пуповины возникают в клетках в виде нестойких соединений с белками, обладающих характером мукопротеидов. Аналогичное соединение хондроитинсерной кислоты с коллагеном представляет собой основную составную часть хрящей. [c.453]

    Белки в природе. Белковые вещества, или белки, находятся во всех растительных и животных организмах. Белки являются главной составной частью протоплазмы, содержатся в. крови, молоке, мышцах и хрящах животных, составляют главную часть куриного яйца. Белки входят в состав волос, когтей, рогов, кожи, перьев, шерсти и шелка. Животный организм более богат белковыми веществами, чем растительный. Б растениях белки встречаются в протоплазме, ядре, клеточном соке и семенах. Главную же массу растений составляет клетчатка. [c.387]


    Белки-это макромолекулярные соединения, имеющиеся во всех живых клетках. Они служат важнейшим строительным материалом в тканях животных, являются главной составной частью кожи, хрящей, ногтей и мышц. К белкам относятся и ферменты-катализаторы биохимических реакций, протекающих во всех живых организмах. Белки осуществляют перенос жизненно важных веществ в организме. Например, гемоглобин, который переносит О2 от легких к клеткам, представляет собой белок. Антитела, выполняющие в организме защитную функцию (защищают от вредных веществ), тоже состоят из белков. [c.444]

    Значение белков в природе исключительно велико, так как они играют первостепенную роль во всех явлениях жизни. Белки широко распространены в природе это основные вещества, из которых построены ядра и протоплазма ж-ивых клеток, мышцы, хрящи, сухожилия, кожа, волосы. Они содержатся также в растениях, которые, наряду с синтезом углеводов, осуществляют синтез белков из простых неорганических веществ. [c.179]

    Белки могут выполнять множество функций. Некоторые из них — ферменты - катализируют реакции, как уже было описано. Другие служат гормонами — специальными веществами, выделяемыми некоторыми органами и разносимыми кровью к другим органам, где они вызывают биохимическую активность (например, ряд гормонов переключает деятельность женского организма на подготовку к беременности). Третьи - транспортные белки — служат переносчиками жизненно важных веществ в организме из одного места в другое. Гемоглобин - одна из таких молекул он разносит кислород от легких к тканям. Белки также служат структурным материалом тела. Волосы, мышцы, кожа, хрящи и ногти построены из белков (см. также табл. ГУ.б в главе о пище). [c.452]

    Полисахариды соединительных тканей (хондроитинсульфаты, гепарин и др., см. стр. 541) образуют с белками этих тканей комплексы, которые долгое время считали комплексами ионного типа, образованными сульфогруппами сульфированных углеводов и основными группами белка. В настоящее время, однако, установлено, что в действительности это белково-углеводные соединения, связанные ковалентной, хотя и довольно лабильной, связью. Комплекс хондроитинсульфата с белком, который был выделен из гиалинового хряща в условиях, исключающих гидролитический разрыв связей , имеет молекулярный вес, достигающий нескольких миллионов. Он содержит, по-видимому, около 20 цепей хондроитинсульфата, присоединенных к белковой цепи , т. е. относится к гликопротеинам типа П1. Результаты мягкого щелочного гидролиза свидетельствуют о наличии 0-гликозидных связей в этом гликопротеине , однако возможно, что они не являются единственным типом связи . После обработки гиалуронидазой, расщепляющей углеводные цепи, и папаином, расщепляющим белковую цепь, выделены гликопептидные фрагменты, содержащие галактозу, ксилозу, а также аминокислоты, в том числе серин . Исследования, проводимые в настоящее время, должны дать окончательный ответ на вопрос о природе связи в комплексе. [c.580]


    В заключение этой главы остановимся на строении и свойствах фибриллярных белков — структурных и сократительных. Первые играют роль опорных и защитных компонент, входя в состав сухожилий, хрящей, костей, связок и т. д. (коллагены), а также кожи, волос, шерсти, рогов и т. д. (кератины). Вторые [c.126]

    Белки широко распространены в природе. Особенно много их содержат организмы животных и человека. Протоплазма и ядра живых клеток состоят в основном из белков. Большое количество белков содержится в костях, хрящах, мышцах, в нервных тканях. Из белков состоят волосы, шерсть, перья, чешуя рыб, копыта, когти, рога и т. д. Белки содержатся в яйцах птиц, входят в состав крови, молока и т. п. [c.288]

    Наиб, кол-ва П. содержатся в соединит ткани животных, где зтч в-ва, в первую очередь протеохондроитинсульфаты и протеодерматансульфаты, в комплексе с гиалуроновой к-той, коллагеном и нек-рыми др. белками обеспечивают необходимые физ.-мех. св-ва таких образований, как кости, сухожилия, хрящи, межпозвоночные диски, кожа, стенки [c.112]

    Молекулярный вес белков варьирует в широких пределах— от нескольких тысяч до десятков миллионов. Сравнительно простыми являются такие белки, как кератин, фиброин и др. Белки этого типа носят название фибриллярных (нитевидных) белков. Ош обладают, как правило, достаточно высокой жесткостью и прочностью, в связи с чем используются организмом для создания жестких структур. Кератин, например, служит основным белком кожи, ногтей, волос, рогов и перьев. Из фиброина состоят шелковые нити. К фибриллярным белкам отиосится также коллаген, который входит в состав хрящей и сухожилий. [c.438]

    Остеокласт—гигантская многоядерная клетка костной ткани, способная резорбировать обызвествленный хрящ и межклеточное вещество костной ткани в процессе развития и перестройки кости. Это основная функция остеокласта. Следует отметить, что остеокласты, так же как и остеобласты, синтезируют РНК, белки. Однако в остеокластах этот процесс протекает [c.672]

    Глюкопротеиды. Некоторые белки этой группы встречаются в слизистых выделениях животных организмов и обусловливают свойства этих выделений тянуться в нити даже при сравнительно большом разбавлении. Эти белки образуют

9 вещей, которые нужно знать о том, как организм использует белок для восстановления мышечной ткани

Когда дело доходит до увеличения размера или определения мышц, вам, вероятно, говорили, что поднятие тяжестей разрушает мышцу, которая затем становится сильнее или больше в результате процесса восстановления. Но так ли это на самом деле, или это просто еще один из распространенных мифов о спортзале, который передается от более опытных ветеранов новичкам?

Что ж, в отличие от многих распространенных мифов о спортзале, это утверждение фактически основано на том, что тренировки с отягощениями до утомления действительно вызывают повреждение мышц.В частности, это повреждение происходит с белками, составляющими мышечные волокна. Мышцы представляют собой пучки отдельных волокон, обернутых фасцией и соединительной тканью. Самыми маленькими компонентами мышечных волокон являются микрофиламенты белка актина и миозина. Теория скользящих нитей предполагает, что актин и миозин перекрываются, и когда они получают сигнал от центральной нервной системы о сокращении, они скользят друг по другу, создавая силу, сокращающую мышцы.

Существует два типа перегрузки, которые могут стимулировать рост мышц: метаболическая и механическая.Метаболическая перегрузка - это объем работы, выполняемой мышцами, при которой у нее истощается доступный запас энергии. Когда мышцы постоянно тренируются до усталости, мышечные клетки адаптируются, чтобы удерживать больше гликогена в качестве топлива. Поскольку 1 грамм гликогена может удерживать 3 грамма воды, когда мышца накапливает больше гликогена, она может увеличиваться в размере из-за дополнительного гликогена и связанной воды.

Механическая перегрузка - это структурное повреждение актин-миозиновых белковых нитей в результате физических упражнений, таких как тяжелая атлетика или взрывная плиометрика.Повреждение мышц запускает процесс восстановления, в котором определенные гормоны вместе с макроэлементным белком синтезируют новые сателлитные клетки, которые используются для восстановления поврежденных мышечных волокон. Другими словами, роль белка заключается в восстановлении тканей, поврежденных физическими упражнениями.

Прочтите, чтобы узнать девять вещей о роли, которую белок играет в поддержании организма во время и после тренировки.

  1. В организме человека белки являются основными структурными компонентами клеток и выполняют несколько различных функций.Основная функция белка, потребляемого с пищей, заключается в создании и восстановлении клеток, в том числе мышечных клеток, поврежденных во время тренировок до мгновенной усталости. (Примечание : Неудача - это не завершение повторения; усталость - это неспособность выполнить еще одно повторение.) Дополнительные роли, которые диетические белки играют в организме, включают транспортировку клеток, выполнение функций ферментов для поддержки различных физиологических функций и действие гормонов.
  2. Хотя основная роль белка заключается в восстановлении поврежденных тканей, он также может использоваться для выработки энергии для мышечных сокращений, когда другие источники аденозинтрифосфата (АТФ, клеточная форма энергии), а именно жиры и углеводы, недоступны.Глюконеогенез - это термин, который описывает, как белок превращается в гликоген для АТФ. Однако это происходит только в результате средней или высокой интенсивности в течение длительного периода времени. Спортивные напитки содержат сахар и натрий, которые помогают поддерживать уровень гликогена, чтобы избежать глюконеогенеза, экономя белки, поэтому их можно использовать для восстановления тканей после тренировки. Другой вариант - ограничить высокоинтенсивную активность не более 45-50 минут, чтобы обеспечить достаточный запас гликогена во время тренировки.
  3. Аминокислоты - это строительные блоки белка. (Примечание: Для справки, «амино» означает «содержащий азот»). Всего 20 аминокислот. Четыре считаются несущественными, потому что организм может их производить, а девять являются важными, потому что они не могут быть произведены в организме и должны потребляться с пищей. Восемь аминокислот считаются условными, поскольку они могут стать незаменимыми и должны потребляться с пищей. Прием аминокислот до и во время тренировки в сочетании с восстановительной закуской или белковой пищей после тренировки может увеличить синтез мышечного белка.Применение различных стратегий восстановления после тренировки может позволить вашим клиентам тренироваться с большим объемом для достижения определенной цели по силе или производительности.
  4. Protein обеспечивает около 4 калорий энергии на грамм, и когда белок потребляется как часть хорошо сбалансированной диеты, он может помочь обеспечить чувство сытости или насыщения. Это, в свою очередь, может уменьшить чувство голода, которое может привести к потреблению слишком большого количества калорий. Кроме того, белок является более энергоемким, а это означает, что он требует больше энергии в процессе пищеварения по сравнению с углеводами и жирами.
  5. Организм постоянно строит новые клетки взамен старых, и аминокислоты, потребляемые с пищей, поддерживают этот процесс. Нормы питания по потреблению белка для среднего здорового взрослого человека составляют 0,8-0 грамма белка на килограмм веса тела (0,4-0,5 грамма на фунт). Рекомендуемая суточная доза для человека, который много тренируется на аэробную выносливость, составляет 1,0–1,6 грамма на килограмм веса (0,5–0,7 грамма на фунт). Для тех, кто много занимается силовыми тренировками, потребляйте 1.4–1,7 грамма на килограмм веса (0,6–0,8 грамма на фунт) поддержат синтез мышечного белка. Например, активный мужчина весом 170 фунтов, который тренируется с умеренной или высокой интенсивностью большую часть дней недели, должен потреблять примерно 70-170 граммов белка в день.
  6. Белок должен составлять 15-30% дневной нормы калорий, в зависимости от уровня активности. Следует употреблять больше белка в дни с более интенсивной физической активностью.
  7. Для людей, заинтересованных в росте мышц, рекомендуется употреблять продукты с высоким содержанием белка, например нежирное мясо, рыбу, яйца, курицу или молоко.Соя - единственная форма растительного белка, содержащая все восемь незаменимых аминокислот. Хотя потребление белка важно для роста мышц, употребление слишком большого количества белка, хотя и не обязательно опасно, просто приведет к тому, что организм будет выводить его с мочой.
  8. Белок следует употреблять в течение дня, а не за один прием пищи. Например, вышеупомянутому активному мужчине весом 170 фунтов было бы разумно потреблять 20-40 граммов белка за раз, распределенных между тремя приемами пищи и двумя перекусами.
  9. Из белка, хранящегося в организме, почти половина хранится в скелетных мышцах, до 15% используется для структурных тканей, таких как кожа и кости, а оставшиеся белки находятся в тканях и органах, включая почки и печень.

Хотите узнать больше? Прочтите здесь о нескольких скрытых источниках белка.

.

9 Важные функции белков в организме

Белки могут снабжать ваш организм энергией.

Белок содержит четыре калории на грамм, то есть столько же энергии, что и углеводы. Наибольшее количество энергии обеспечивают жиры - девять калорий на грамм.

Однако последнее, что ваше тело хочет использовать для получения энергии, - это белок, поскольку это ценное питательное вещество широко используется в организме.

Углеводы и жиры гораздо лучше подходят для получения энергии, так как ваше тело сохраняет резервы для использования в качестве топлива.Более того, они метаболизируются более эффективно по сравнению с белком (36).

На самом деле, в нормальных условиях белок обеспечивает организм очень малым количеством энергии.

Однако в состоянии голодания (18–48 часов без приема пищи) ваше тело разрушает скелетные мышцы, чтобы аминокислоты могли снабжать вас энергией (37, 38).

Ваше тело также использует аминокислоты из разрушенных скелетных мышц, если запасы углеводов недостаточны. Это может произойти после изнурительных упражнений или если вы в целом не потребляете достаточно калорий (39).

Резюме

Белок может служить ценным источником энергии, но только в ситуациях голодания, изнурительных физических упражнений или недостаточного потребления калорий.

.

6 лучших добавок для набора мышечной массы

Мы включаем продукты, которые, по нашему мнению, будут полезны нашим читателям. Если вы покупаете по ссылкам на этой странице, мы можем получить небольшую комиссию. Вот наш процесс.

Если вы занимаетесь спортом регулярно, вы, вероятно, хотите быть уверены, что получаете от них максимум удовольствия.

Одним из важных преимуществ упражнений является набор мышц и силы. Наличие здорового количества мышц позволяет вам работать лучше во время упражнений и в повседневной жизни.

Три основных критерия должны соблюдаться для максимального набора мышц: есть больше калорий, чем вы сжигаете, потреблять больше белка, чем вы расщепляете, и программа упражнений, которая бросает вызов вашим мышцам (1, 2, 3).

Несмотря на то, что все эти критерии можно выполнить без приема пищевых добавок, некоторые добавки могут помочь вам в достижении ваших целей.

6 добавок, перечисленных ниже, могут помочь вам набрать больше мышц с помощью программы упражнений.

Креатин - это молекула, которая естественным образом вырабатывается в организме. Он обеспечивает энергией ваши мышцы и другие ткани.

Однако прием его в качестве пищевой добавки может увеличить содержание креатина в мышцах до 40% по сравнению с нормальным уровнем (4, 5, 6).

Это влияет на ваши мышечные клетки и работоспособность, способствуя увеличению мышечной массы. Фактически, большое количество исследований показывает, что креатин улучшает мышечную силу (7, 8, 9).

Это хорошие новости, если вы пытаетесь нарастить мышцы. Большая сила позволяет вам лучше работать во время упражнений, что со временем приводит к большему увеличению мышечной массы (10).

Креатин также может увеличивать содержание воды в мышечных клетках. Это может привести к небольшому набуханию ваших мышечных клеток и подаче сигналов для роста мышц (11).

Кроме того, эта добавка может повышать уровень гормонов, участвующих в росте мышц, таких как IGF-1 (12).

Более того, некоторые исследования показывают, что креатин может уменьшить расщепление белков в мышцах (13).

В целом, многие исследователи изучали креатиновые добавки и упражнения, и ясно одно - креатин может помочь увеличить мышечную массу (14, 15).

Креатин также был тщательно изучен и имеет выдающийся профиль безопасности (14).

Если вы ищете добавку, которая поможет вам нарастить мышцы, сначала подумайте о креатине.

Купите креатиновые добавки в Интернете.

Резюме: Креатин, вероятно, единственная лучшая добавка для набора мышечной массы
. Многие исследования подтвердили, что он помогает увеличить мышечную массу.

Получение достаточного количества белка имеет решающее значение для набора мышечной массы.

В частности, для набора мышечной массы вам необходимо потреблять больше белка, чем ваше тело расщепляет естественными процессами (16).

Хотя можно получить весь необходимый белок из продуктов, богатых белком, некоторым людям это сложно.

Если это похоже на вас, вы можете подумать о приеме белковой добавки.

Существует множество различных протеиновых добавок, но некоторые из самых популярных - это сывороточный, казеиновый и соевый протеин. Другие белковые добавки содержат белок, выделенный из яиц, говядины, курицы или других источников (17).

Исследования показывают, что добавление дополнительного белка через добавки вызывает немного больший набор мышц у людей, которые тренируются, чем добавление дополнительных углеводов (18, 19, 20).

Однако наибольший эффект, вероятно, наблюдается у людей, которые не получают достаточного количества белка в своем обычном рационе.

На самом деле, некоторые исследования показывают, что потребление очень большого количества белковых добавок не помогает увеличить мышечную массу, если вы уже соблюдаете диету с высоким содержанием белка (21, 22, 23, 24).

Многие люди задаются вопросом, сколько белка нужно есть в день. Если вы ведете активный образ жизни, пытаясь нарастить мышцы, лучше всего употреблять 0,5–0,9 грамма белка на фунт (1,2–2,0 грамма на кг) веса тела (25, 26, 27).

Покупайте протеиновые добавки в Интернете.

Резюме: Потребление достаточного количества белка абсолютно необходимо для
оптимального набора мышечной массы. Однако, если вы получаете достаточно белка в своем рационе,
принимать белковые добавки не нужно.

Гейнеры - это добавки, которые помогут вам получать больше калорий и белка. Обычно их используют люди, которым сложно нарастить мышцы.

Некоторым людям трудно нарастить мышечную массу даже при потреблении большого количества калорий и поднятии тяжестей (28).

Хотя калорийность добавок для набора веса варьируется, нередко они содержат более 1000 калорий на порцию.

Многие люди думают, что эти калории поступают из белка, так как он очень важен для наращивания мышечной массы. Однако большая часть калорий на самом деле поступает из углеводов.

На порцию этих высококалорийных добавок часто приходится 75–300 граммов углеводов и 20–60 граммов белка.

Хотя эти продукты могут помочь вам потреблять больше калорий, важно понимать, что в добавках для набора веса нет ничего волшебного.

Некоторые исследования физически неактивных взрослых показали, что резкое увеличение калорийности может увеличить мышечную массу, например мышечную, если вы потребляете достаточное количество белка (29).

Однако исследования взрослых, которые тренировались с отягощением, показали, что прием добавки с гейнером может быть неэффективным для увеличения мышечной массы (28).

В целом гейнеры рекомендуются только в том случае, если вы изо всех сил пытаетесь съесть достаточно еды и вам легче выпить коктейль для набора веса, чем есть больше настоящей еды.

Покупайте добавки для набора веса в Интернете.

Резюме: Гейнеры - это высококалорийные продукты, которые помогут вам потреблять больше калорий и белка. Однако они рекомендуются только в том случае, если
вам трудно получить достаточно калорий из пищи.

Бета-аланин - это аминокислота, которая снижает утомляемость и может повысить работоспособность (30, 31).

Кроме того, бета-аланин может помочь увеличить мышечную массу, если вы выполняете программу упражнений.

Одно исследование показало, что прием 4 граммов бета-аланина в день в течение восьми недель увеличивал мышечную массу больше, чем плацебо, у борцов колледжа и футболистов (32).

В другом исследовании сообщалось, что добавление добавки бета-аланина к шестинедельной программе высокоинтенсивных интервальных тренировок увеличивало мышечную массу примерно на 0,45 кг больше, чем плацебо (33).

Хотя необходимы дополнительные исследования бета-аланина и набора мышечной массы, эта добавка может помочь поддерживать набор мышечной массы в сочетании с программой упражнений.

Купите добавки с бета-аланином в Интернете.

Резюме: Бета-аланин - это аминокислота, которая может улучшить производительность при упражнениях. Некоторые данные показывают, что он также может помочь увеличить мышечную массу в ответ на упражнение
, но требуется дополнительная информация.

5. Аминокислоты с разветвленной цепью

Аминокислоты с разветвленной цепью (BCAA) состоят из трех отдельных аминокислот: лейцина, изолейцина и валина.

Они содержатся в большинстве источников белка, особенно животного происхождения, таких как мясо, птица, яйца, молочные продукты и рыба.

BCAA критически важны для роста мышц и составляют около 14% аминокислот в ваших мышцах (34, 35).

Практически каждый ежедневно потребляет BCAA с пищей, но также очень популярно принимать BCAA в качестве добавок.

Небольшое количество исследований показало, что BCAA могут улучшить прирост мышц или уменьшить их потерю по сравнению с плацебо (36, 37).

Однако другие исследования показывают, что BCAA могут не приводить к большему увеличению мышечной массы у тех, кто выполняет программу упражнений (38).

Вполне вероятно, что добавки BCAA принесут вам пользу только в том случае, если вы не потребляете достаточно высококачественного белка в своем рационе.

Хотя они могут быть полезными, если ваша диета неадекватна, необходимо больше информации, прежде чем BCAA будут рекомендованы в качестве добавки для набора мышечной массы.

Покупайте добавки BCAA в Интернете.

Резюме: Аминокислоты с разветвленной цепью важны для роста мышц. Они содержатся во многих продуктах, и неясно, полезно ли их принимать в качестве добавки
, когда вы уже потребляете достаточно белка.

Бета-гидрокси-бета-метилбутират (HMB) - это молекула, которая образуется, когда ваш организм перерабатывает аминокислоту лейцин.

HMB отвечает за некоторые положительные эффекты белков и лейцина в рационе (39).

Это может быть особенно важно для уменьшения распада мышечных белков (40).

Хотя HMB естественным образом вырабатывается вашим организмом, прием его в качестве добавки позволяет повысить его уровень и может принести пользу вашим мышцам (40, 41).

Несколько исследований на ранее нетренированных взрослых показали, что прием 3–6 граммов HMB в день может улучшить прирост безжировой массы тела в результате силовых тренировок (42, 43, 44).

Однако другие исследования показывают, что аналогичные дозы HMB, вероятно, не эффективны для увеличения мышечной массы у взрослых, имеющих опыт силовых тренировок (45, 46, 47).

Это может означать, что HMB наиболее эффективен для тех, кто начинает заниматься физическими упражнениями или увеличивает их интенсивность.

Покупайте добавки HMB в Интернете.

Резюме: HMB может помочь увеличить мышечную массу у тех, кто
начинает программу силовых тренировок, но, похоже,
менее эффективен для тех, кто имеет опыт тренировок.

Некоторые другие добавки утверждают, что они увеличивают мышечную массу. К ним относятся конъюгированная линолевая кислота, бустеры тестостерона, глутамин и карнитин.

Однако доказательства неоднозначны.

  • Конъюгированная линолевая кислота
    (CLA):
    CLA относится к группе
    жирных кислот омега-6, которые оказывают на организм различные эффекты. Исследования CLA для набора мышечной массы
    дали неоднозначные результаты, и неясно, полезно ли это (48, 49, 50, 51).
  • Бустеры тестостерона: Добавки, повышающие уровень тестостерона, включают
    D-аспарагиновую кислоту, трибулус террестрис, пажитник, ДГЭА и ашвагандху. Вероятно,
    эти соединения приносят пользу только людям с низким уровнем тестостерона (52, 53, 54, 55, 56).
  • Глютамин и карнитин: Вероятно,
    они не эффективны для увеличения мышечной массы у
    активных людей молодого или среднего возраста. Однако исследования показали, что карнитин может иметь около
    преимуществ для мышечной массы у пожилых людей (57, 58, 59, 60).

Резюме: Многие виды добавок утверждают, что увеличивают мышечную массу,
, но мало доказательств того, что они эффективны для
здоровых, активных людей.

Добавки не могут обеспечить максимальный прирост мышц, если вам не хватает программ питания и упражнений.

Чтобы набрать мышечную массу, вам нужно потреблять достаточно калорий и белка, а также заниматься физическими упражнениями, в идеале с отягощениями. После того, как ваш режим питания и физических упражнений будет под контролем, вы можете подумать о пищевых добавках.

Креатин и протеиновые добавки, вероятно, являются наиболее эффективным выбором для набора мышечной массы, но для некоторых людей могут быть полезны и другие добавки.

.

23 Что нужно знать, от советов по облегчению до Preventi

Когда дело доходит до мышечной болезненности, существует два типа:

  • острая мышечная болезненность, также называемая немедленной мышечной болезненностью
  • Отсроченная мышечная болезненность (DOMS)

Это часто описывается как жгучая боль. Это вызвано накоплением молочной кислоты в мышцах. Этот тип мышечной болезненности быстро проходит.

Это боль и скованность, которые вы чувствуете на следующий день после тренировки.Это происходит из-за микроскопических разрывов в мышечных волокнах и окружающих соединительных тканях во время упражнений.

Обычно это происходит после того, как вы задействуете мышцы не так, как они привыкли, например, при новой или более интенсивной тренировке.

В поговорке «нет боли - нет выгоды» есть доля правды. Постепенное увеличение интенсивности тренировок может помочь уменьшить болезненность мышц.

Каким бы неудобным это ни было, не позволяйте боли сбивать вас с толку! Вы заботитесь о себе - чем дольше вы будете этим заниматься, тем легче вам станет.

Хотя необходимы дополнительные исследования, некоторые данные свидетельствуют о том, что вы можете избавиться от болезненности мышц, употребляя в пищу продукты, богатые антиоксидантами.

Арбуз, например, богат аминокислотой под названием L-цитруллин. Исследования, проведенные в 2013 и 2017 годах, показывают, что эта аминокислота может снизить частоту сердечных сокращений и болезненность мышц.

Другими противовоспалительными продуктами, которые показали себя многообещающими в лечении мышечной боли, являются:

Одно исследование 2017 года показало, что добавление молочного белка может помочь при мышечной боли и силе при мышечных травмах, вызванных физическими упражнениями.

Концентрат молочного белка - это концентрированный молочный продукт, содержащий от 40 до 90 процентов молочного белка. Его используют в продуктах и ​​напитках, обогащенных белком, но его также можно купить в порошкообразной форме в магазинах здоровой пищи.

Арника уже много лет используется как естественное средство от мышечной боли. Его производят от цветка Arnica montana, , из которого произрастают в горах Сибири и Европы.

Хотя необходимы дополнительные исследования, одно исследование 2013 года показало, что кремы и мази для местного применения, содержащие арнику, эффективно снимают боль и воспаление, вызванные интенсивными эксцентрическими упражнениями.

Применение тепла сразу после тренировки может уменьшить отсроченную болезненность мышц. Одно исследование, проведенное в 2013 году, показало, что, хотя и сухое, и влажное тепло помогают при боли, влажное тепло способствует еще большему уменьшению боли.

Отличные способы получить удовольствие от терапии влажным теплом после тренировки:

Замачивание в английской соли снижает мышечную боль и воспаление. Влажное тепло, которое вы получаете, сидя в горячей ванне, - дополнительный бонус.

Считается, что холодовая терапия снимает боль в мышцах и суставах, уменьшая отек и нервную активность.Вы можете применить холод, используя пакет со льдом или пакет с замороженными овощами, но лучше принять холодную ванну. (Только помните, никогда не прикладывайте лед непосредственно к коже!)

Пенная валика - это, по сути, вид самомассажа. Исследования показали, что катание с пеной может облегчить отсроченную болезненность мышц. Это также может помочь при мышечной усталости и гибкости.

Пенные ролики можно купить везде, где вы покупаете тренажеры.

Для ролика с пеной вы кладете ролик на пол под больную мышцу и медленно перекатываетесь по нему.Вы можете поискать в Интернете видеоролики о том, как выполнять рулон с пеной для разных групп мышц.

Массаж не только расслабляет, но и облегчает синдром DOMS и улучшает работу мышц. Результаты одного исследования 2017 года показывают, что массаж наиболее эффективен, если его выполнять через 48 часов после тренировки.

Ношение компрессионного белья в течение 24 часов после тренировки может уменьшить DOMS и ускорить восстановление мышечной функции. Компрессионное белье удерживает мышцы на месте и увеличивает кровоток для более быстрого восстановления.

Компрессионное белье можно получить для большинства групп мышц. Типы компрессионной одежды включают рукава, носки и леггинсы.

Не позволяйте мышечной боли мешать вам тренироваться. Мышечная болезненность - это естественный процесс, который помогает организму привыкнуть к упражнениям. Как только вы вызовете эту болезненность, она не повторится, если вы не увеличите интенсивность.

Если боль сильная, выполняйте упражнения с меньшей интенсивностью или переключитесь на другую группу мышц в течение дня или двух.

Мы часто слышим, что растяжка до и после тренировки может помочь предотвратить травмы и боль, но исследования на самом деле говорят об обратном.

Одно исследование 2011 года показало, что растяжка практически не влияет на болезненность мышц после тренировки.

Исследование 2012 года показало, что статическая растяжка может снизить мышечную работоспособность. Статическая растяжка включает в себя растяжение мышцы до минимального дискомфорта и удержание ее в течение определенного периода времени.

Вместо этого выберите динамическую растяжку, при которой вы постоянно двигаете мышцами и суставами. Ходьба с выпадом и круговыми движениями руками - отличное начало.

Динамическая растяжка подготавливает ваше тело за счет увеличения частоты сердечных сокращений, улучшения кровотока и повышения вашей гибкости.

Заминка после тренировки помогает нормализовать дыхание и частоту сердечных сокращений.

Он также может помочь удалить любую молочную кислоту, которая накопилась во время тренировки, потенциально уменьшая отсроченную болезненность мышц. Остынетесь, прогулявшись или покатавшись на велотренажере в течение 5–10 минут.

Боль в мышцах бывает у новичков и спортсменов с хорошей физической подготовкой. Это естественная адаптивная реакция на новую активность, увеличение интенсивности или продолжительности.

Вы все еще можете ощущать острую болезненность мышц от упражнений, но со временем DOMS будет улучшаться, и ваше тело адаптируется к вашим тренировкам.

Внимательное отношение к своему телу и тренировкам - лучший способ предотвратить болезненные ощущения в будущем и получить от упражнений максимальную пользу.

Подготовьте свое тело к упражнениям, каждый раз делая соответствующую разминку и остывая. Изучите правильную форму и придерживайтесь режима, интенсивность и продолжительность которого постепенно увеличивается, чтобы уменьшить болезненность и снизить риск травм.

Умеренные дозы кофеина могут снизить боль после тренировки почти на 50 процентов, поэтому выпейте чашку кофе перед тренировкой.Просто не забудьте после этого выпить воду. Гидратация также помогает уменьшить болезненность мышц.

DOMS обычно не требует лечения и разрешается в течение нескольких дней. Однако вам следует обратиться к врачу, если ваша боль длится более недели или продолжает возвращаться, или если вы испытываете сильную слабость, головокружение или затрудненное дыхание.

.

Как стареют мышцы и как упражнения могут его замедлить

Для вас, читатели старше 30 лет, у нас для вас плохие новости. Скорее всего, вы уже начали терять мышцы. И становится только хуже. До четверти взрослых старше 60 лет и половина из них старше 80 имеют более тонкие руки и ноги, чем в молодости.

В 1988 году Ирвин Розенберг из Университета Тафтса придумал термин «саркопения» из греческих корней, чтобы описать возрастную нехватку ( пеня ) плоти ( саркс ).Старение мышц, вероятно, имеет несколько основных факторов, включая уменьшение количества мышечных стволовых клеток, митохондриальную дисфункцию, снижение качества и оборота белка, а также гормональную дерегуляцию. Потеря мышечной массы связана с мышечной слабостью и, возможно, ей предшествует, что может затруднить выполнение повседневных действий, таких как подъем по лестнице или даже вставание со стула, для многих пожилых людей. Это может привести к малоподвижности, что само по себе приводит к потере мышечной массы в любом возрасте. Таким образом, пожилые люди могут войти в порочный круг, который в конечном итоге приведет к повышенному риску падений, потере независимости и даже преждевременной смерти.

Хорошая новость в том, что упражнения могут предотвратить и даже обратить вспять потерю мышц и слабость. Недавние исследования показали, что физическая активность может способствовать здоровью митохондрий, увеличивать обмен белка и восстанавливать уровни сигнальных молекул, участвующих в мышечной функции. Но хотя ученые много знают о том, что идет не так в процессе старения, и знают, что упражнения могут замедлить неизбежное, детали этой взаимосвязи только начинают проявляться в центре внимания.

Скелетные мышцы человека

© РЕГЕНТЫ МИЧИГАНСКОГО УНИВЕРСИТЕТА

Роль мышечных стволовых клеток

Скелетные мышцы состоят из многоядерных волокон, образованных слиянием клеток-предшественников мышц или миобластов во время эмбрионального и внутриутробного развития и постнатально до ткань достигает взрослого размера.Зрелые волокна постмитотичны, то есть больше не делятся. В результате во взрослом возрасте рост и восстановление мышц возможны только благодаря наличию мышечных стволовых клеток.

В 1961 году биофизик из Рокфеллеровского университета Александр Мауро с помощью электронной микроскопии впервые описал мышечные стволовые клетки, назвав их «сателлитными клетками» из-за их расположения на периферии мышечного волокна. 1 Впоследствии исследователи продемонстрировали, что клетки-сателлиты являются единственными клетками, способными восстанавливать мышцы, что объясняет, почему восстановление после мышечных травм у пожилых людей происходит медленно и часто неполно: количество сателлитных клеток падает с 8 процентов от общего числа ядер мышц в молодых людей до 0.8 процентов в возрасте от 70 до 75 лет.

Конечно, причиной может быть снижение способности сателлитных клеток делиться и восстанавливаться, но исследования не подтверждают эту идею. В новаторских исследованиях, проведенных в 1989 году, биологи Брюс Карлсон и Джон Фолкнер из Мичиганского университета показали, что мышца, выделенная у двухлетней крысы, восстанавливается быстрее и лучше при пересадке двух-трехмесячным крысам. 2 Совсем недавно мы изолировали эти клетки от молодых и старых взрослых и были удивлены, обнаружив, что сателлитные клетки пожилого человека росли в культуре так же, как и от молодых людей. 3

Исследованные нами сателлитные клетки пожилого человека, однако, показали драматические изменения в их эпигенетическом отпечатке пальца с репрессией многих генов метилированием ДНК. Один ген, называемый sprouty 1 , известен как важный регулятор покоя клеток. Снижение экспрессии sprouty 1 может ограничивать самообновление сателлитных клеток и может частично объяснять прогрессирующее снижение количества сателлитных клеток, наблюдаемое в мышцах человека во время старения.Действительно, стимуляция экспрессии sprouty 1 предотвращает возрастную потерю сателлитных клеток и противодействует возрастной дегенерации нервно-мышечных соединений у мышей. 4

ИЗМЕНЕНО ИЗ © ISTOCK, jxfzsy

Митохондриальные участники

Другими вероятными виновниками старения мышц являются митохондрии, электростанции мышц. Для эффективной работы скелетным мышцам необходимо достаточное количество полнофункциональных митохондрий. Эти органеллы составляют от 5 до 12 процентов объема мышечных волокон человека, в зависимости от активности и специализации мышц (быстро сокращающиеся или медленно сокращающиеся).Исследования показывают, что аномалии морфологии, количества и функции митохондрий тесно связаны с потерей мышечной массы, наблюдаемой у пожилых людей.

В 2013 году Дэвид Гласс из Novartis и его коллеги обнаружили, что маркеры митохондриального метаболизма значительно снижались с возрастом у крыс, и это коррелировало с началом саркопении. 5 Хотя результаты просто коррелируют, время и почти идеальная взаимосвязь между снижением экспрессии митохондриальных генов и началом саркопении является убедительным доказательством того, что митохондриальная дисфункция может быть движущей силой саркопении.Экспрессия генов и выработка белков, которые регулируют деление и слияние митохондрий - процессы, которые поддерживают объем и функцию митохондрий - также упали, предполагая, что динамика митохондрий также нарушается во время старения мышц.

Как и в случае снижения мышечных стволовых клеток, основной причиной плохого здоровья митохондрий может быть регуляция генов. В 2016 году Алиса Панерек и ее коллеги из Института медицинских наук Нестле и Манчестерского столичного университета в Великобритании изучили транскриптомы мышц крысы и человека и обнаружили, что предрасположенность к саркопении у обоих видов тесно связана с дерегуляцией генных сетей, участвующих в митохондриальных процессах. , регуляция внеклеточного матрикса и фиброза, образование избыточной соединительной ткани в мышце, вызванное накоплением белков внеклеточного матрикса. 6

Контроль качества белка

Даже если они едят много белка, пожилые люди часто не могут поддерживать мышечную массу, вероятно, потому, что их тела не могут превращать белки в мышцы достаточно быстро, чтобы не отставать от естественной скорости разрушения тканей. Более того, мышцы пожилых людей подвергаются более низкому уровню аутофагии - процессу, который в здоровых условиях перерабатывает использованные и поврежденные белки, органеллы и другие клеточные структуры. Это может привести к дисбалансу между производством и деградацией белка, что, вероятно, связано со старением мышц.

См. «Ешьте себя, чтобы жить: роль аутофагии в здоровье и болезнях».

Могут быть и другие способы, которыми снижение аутофагии может способствовать как потере мышц, так и их слабости во время старения. Чтобы поддерживать мышечную силу, мышечные клетки должны избавляться от внутриклеточного мусора, который накапливается с течением времени. В случае мышечных клеток этот мусор включает старые органеллы, такие как митохондрии и эндоплазматические ретикулы, скопления поврежденных белков и свободные радикалы, которые со временем могут стать цитотоксичными.Перерабатывая митохондрии, мышечные волокна повышают выработку энергии и сохраняют функцию мышц. Если мышечные волокна не справятся с этими потенциально опасными объектами, они станут меньше и слабее. Разумеется, в исследовании группы Марко Сандри из Университета Падуи в Италии у мышей, в скелетных мышцах которых отсутствовал один из основных генов, контролирующих аутофагию, Atg7, наблюдалась значительная потеря мышц и возрастная мышечная слабость. 7

Сигналы крови

В 2005 году биолог стволовых клеток Стэнфордского университета Томас Рандо и его коллеги объединили кровообращение молодых и старых мышей и обнаружили, что факторы в крови молодых мышей способны омолаживать восстановление мышц у старых мышей.Сейчас хорошо известно, что уровни циркулирующих гормонов и факторов роста резко снижаются с возрастом и что это влияет на старение мышц. Действительно, заместительная гормональная терапия может эффективно обратить вспять старение мышц, отчасти за счет активации путей, участвующих в синтезе белка.

См. «Как старые клетки могут вернуть молодость».

Как стареют мышцы: саркопения, потеря мышечной массы с возрастом, может начаться уже после 30 лет и поражает значительную часть пожилых людей. К счастью, упражнения могут бороться со старением мышц, вероятно, обращая вспять многие возрастные физиологические изменения, лежащие в основе этого снижения.См. Полную инфографику: ВЕБ | PDF

© scott leighton

Более того, мышца сама по себе является секреторным эндокринным органом. Белки, вырабатываемые мышцами при сокращении, попадают в кровь либо сами по себе, либо заключенные в мембраносвязанные везикулы, которые защищают их от разрушения циркулирующими ферментами. Бенте Педерсен из Центра воспаления и метаболизма и Центра исследований физической активности в Дании был первым, кто использовал термин миокин для описания этих белков. Секретированные миокины могут действовать локально на мышечные клетки или другие типы клеток, такие как фибробласты и воспалительные клетки, чтобы координировать физиологию и восстановление мышц, или они могут оказывать воздействие на отдаленные органы, такие как мозг.

Хотя некоторые из этих миокинов были идентифицированы - в культуре мышечные волокна человека секретируют до 965 различных белков - исследователи только начали понимать их роль в старении мышц. Первый идентифицированный миокин, интерлейкин-6 (IL-6), участвует в поддержании мышц, снижая уровни воспалительных цитокинов в мышечной среде, увеличивая при этом стимулируемое инсулином поглощение глюкозы и окисление жирных кислот. Пожилые люди с высоким уровнем циркулирующего IL-6 более склонны к саркопении.Другой миокин, инсулиноподобный фактор роста 1 (IGF-1), может вызывать набухание мышечных волокон, в том числе после тренировки. Уровни IGF-1 снижаются с возрастом, как и уровни рецепторов клеточной поверхности, с которыми связывается IGF-1, а мыши, которые сверхэкспрессируют IGF-1, устойчивы к возрастной саркопении.
Натали Вигери и ее коллеги из Института метаболических и сердечно-сосудистых заболеваний INSERM-Тулузского университета во Франции недавно открыли новый миокин, который они назвали апелином. 8 Исследователи продемонстрировали, что этот пептид может корректировать многие метаболические пути, которые нарушены в стареющих мышцах.При введении старым мышам апелин стимулировал образование новых митохондрий, стимулировал синтез белка, аутофагию и другие ключевые метаболические пути, а также усиливал регенеративную способность стареющих мышц за счет увеличения количества и функции сателлитных клеток. Как и в случае с IGF-1, уровни циркулирующего апелина у людей снижаются с возрастом, что позволяет предположить, что восстановление уровней апелина до уровней, измеренных у молодых людей, может улучшить саркопению.

Упражнения для борьбы со старением мышц

Хотя причины потери мышечной массы многочисленны и сложны, в настоящее время имеется множество доказательств того, что упражнения могут предотвратить или обратить вспять многие из этих возрастных изменений, тогда как бездействие ускоряет старение мышц.Ранее в этом году, например, Джанет Лорд из Университета Бирмингема и Стивен Харридж из Королевского колледжа Лондона исследовали мышцы 125 велосипедистов-любителей мужского и женского пола и показали, что регулярные физические упражнения в течение всей жизни могут замедлить старение мышц: потерь в мышцах не было. мышечная масса или мышечная сила среди тех, кто был старше и регулярно тренировался. Что еще более удивительно, иммунная система тоже не сильно постарела. 9

Влияние упражнений на здоровье мышц, вероятно, действует через столько же механизмов, сколько и лежащих в основе возрастной потери мышечной массы и слабости.Например, количество сателлитных клеток можно увеличить с помощью упражнений, и у активных пожилых людей этих клеток больше, чем у людей, ведущих малоподвижный образ жизни. Это причина, по которой упражнения перед операцией на бедро и колено могут ускорить выздоровление у пожилых людей.

Физическая активность также влияет на митохондрии мышц. Недостаток упражнений снижает эффективность и количество митохондрий в скелетных мышцах, в то время как упражнения способствуют здоровью митохондрий. В прошлом году Катерина Тецце из лаборатории Сандри в Университете Падуи выявила сильную корреляцию между снижением уровней OPA1, белка, участвующего в формировании митохондрий, и снижением мышечной массы и силы у пожилых людей, в то время как уровни OPA1 были поддерживаются в мышцах спортсменов старшего возраста, которые регулярно тренировались на протяжении всей своей жизни. 10

Возрастные заболевания мышц

Саркопения является частью общего процесса старения, но она может быть запущена преждевременно при некоторых заболеваниях мышц с поздним началом. Например, окулофарингеальная мышечная дистрофия (OPMD) - редкое генетическое заболевание, которое в первую очередь поражает мышцы век (окуло) и горла (глотки). Мутации в гене полиаденилата ядерного 1 (PABPN1) белка приводят к продукции аномального белка, который образует агрегаты только в ядрах мышечных волокон.Позднее начало заболевания, которое обычно проявляется в возрасте от 50 до 60 лет, предполагает, что пораженные мышцы успешно справляются с аномальным белком в течение многих лет. Однако способность справляться с аномальными белками с возрастом снижается, и дисбаланс между элиминацией и агрегацией может вызвать начало OPMD.

OPMD показывает механистическое сходство с тяжелыми дегенеративными нарушениями, при которых нарушенный метаболизм РНК и патологические сборки РНК-связывающих белков участвуют в образовании цитоплазматических или ядерных агрегатов.У пациентов со спиноцеребеллярной атаксией, БАС, болезнью Альцгеймера, Хантингтона или Паркинсона эти агрегаты образуются в нейронах. В случае миотонической дистрофии и миозита с тельцами включения они образуются в мышечных волокнах. Определение точного изменения метаболизма РНК - интересный вопрос, стоящий перед исследователями, изучающими старение мышц. Следует отметить, что все эти заболевания также характеризуются аномальными митохондриями, которые наблюдаются в стареющих мышцах.

Исследования этих болезней должны вести не только к конкретным методам лечения, но и к вмешательствам для здорового стареющего населения.Верно и обратное: понимание того, как остановить старение мышц, может предоставить инструменты для улучшения патологических состояний. Поэтому сотрудничество между областями патофизиологии и старения для изучения этих заболеваний, для которых существуют животные и клеточные модели, должно стать предметом будущих исследований.

Упражнения могут даже стимулировать мышечные клетки поддерживать более молодой уровень транскриптов генов и белков. Например, Срикумаран Наир из клиники Майо в Рочестере, штат Миннесота, и его коллеги обнаружили, что высокоинтенсивные аэробные интервальные тренировки обращают вспять многие возрастные различия в составе мышц, включая восстановление уровней митохондриального белка. 11 Саймон Мелов из Института исследований старения Бака и Марк Тарнопольски из Университета Макмастера в Канаде и их коллеги обнаружили, что, в то время как здоровые пожилые люди (средний возраст 70 лет) имели профиль экспрессии генов, который соответствовал митохондриальной дисфункции ранее. В программе тренировок с отягощениями всего за шесть месяцев этот генетический отпечаток полностью изменился до уровней экспрессии, сравнимых с теми, которые наблюдались у молодых людей. Кроме того, упражнения улучшили функцию мышц: пожилые люди были на 59 процентов слабее, чем молодые люди до тренировки, и только на 38 процентов после нее. 12 Различные типы упражнений могут вызывать различные, но специфические реакции в мышцах. Например, в то время как силовые тренировки эффективны для наращивания мышц, согласно работе Наира, интервальные тренировки высокой интенсивности в виде аэробных упражнений, таких как езда на велосипеде и ходьба, оказали наибольшее влияние на клеточном уровне в борьбе с возрастными потерями и слабостью.

Физические упражнения могут предотвратить или обратить вспять многие из этих возрастных изменений, тогда как бездействие ускоряет старение мышц.

Физические упражнения также влияют на аутофагию. В декабре 2011 года Сандри и его коллеги первыми сообщили на мышах, что активность аутофагии может быть увеличена за счет произвольной физической активности, в данном случае бега на беговой дорожке. 13 В январе 2012 года группа Бет Левин из Юго-западного медицинского центра Техасского университета подтвердила, что упражнения быстро увеличивают активность аутофагии и что аутофагия необходима для того, чтобы упражнения имели положительный эффект: физически активные мыши, которые не могли усилить аутофагию. не показали увеличения мышечной массы, содержания митохондрий или чувствительности к инсулину после бега. 14

Наконец, упражнения также могут восстанавливать уровни миокинов, которые снижаются с возрастом. Например, когда пожилые люди следовали регулярной программе физической активности, наблюдалась прямая корреляция между улучшением их физической работоспособности и повышением уровня циркулирующего апелина. 15 Точно так же Иван Баутманс из Брюссельского университета показал, что повышенные уровни циркулирующих маркеров воспаления коррелируют с мышечной усталостью у гериатрических пациентов, а тренировки с отягощениями снижают воспалительные миокины у молодых людей. 16

С помощью этих и других механизмов, которые нам еще предстоит открыть, упражнения могут улучшить общую силу у пожилых людей и, в частности, метаболическую активность скелетных мышц. Будучи самой многочисленной тканью в среднем человеческом теле, составляя от 30 до 40 процентов его общей массы, мышцы имеют решающее значение не только для передвижения и дыхания, но также для гомеостаза глюкозы, липидов и аминокислот. Таким образом, возрастная потеря мышечной массы и качества способствует общей метаболической дисфункции, обычно наблюдаемой у пожилых пациентов.У пожилых женщин после часа быстрой ходьбы на следующий день повысилась чувствительность к инсулину. 17 Таким образом, никогда не поздно заняться спортом, чтобы попытаться бороться с последствиями старения мышц.

Детальное понимание молекулярных и клеточных путей, участвующих в старении мышц, может проложить путь к разработке терапевтических вмешательств для ускорения синтеза белка и увеличения мышечной массы. На данный момент регулярные упражнения в сочетании с правильным питанием по-прежнему являются наиболее эффективным способом борьбы с саркопенией и, возможно, старением в целом.В дополнение к подробному описанию основных причин старения мышц, будущие исследования должны быть направлены на определение оптимальных программ физических упражнений и питания для борьбы с возрастной потерей и слабостью мышц. Это может не значительно увеличить продолжительность жизни человека, но, безусловно, поможет людям достичь конца своей жизни в более здоровом состоянии.

Джиллиан Батлер-Браун изучает нервно-мышечные заболевания и генную терапию в Сорбоннском университете, INSERM, Institut de Myologie, Centre de Recherche en Myologie, в Париже, Франция.В том же учреждении Винсент Мули изучает регенерацию мышц при здоровье и болезнях, Энн Биго изучает старение мышц, а Capucine Trollet изучает возрастные мышечные заболевания и генную терапию.

Ссылки

  1. А. Мауро, «Сателлитная клетка волокон скелетных мышц», J Biophys Biochem Cytol , 9: 493–95, 1961.
  2. B.M. Карлсон, Дж. Фолкнер, «Трансплантация мышц между молодыми и старыми крысами: возраст хозяина определяет выздоровление», Am J Physiol , 256: C1262–66, 1989.
  3. A. Bigot et al., «Возрастное метилирование подавляет SPRY1, что приводит к нарушению восстановления покоя и потере резервного пула стволовых клеток в мышцах пожилого возраста», Cell Rep , 13: 1172–82, 2015 .
  4. W. Liu et al., «Потеря взрослых стволовых клеток скелетных мышц приводит к возрастной дегенерации нервно-мышечных соединений», eLife , 6: e26464, 2017.
  5. C. Ibebunjo et al., «Геномные и протеомные профилирование выявляет снижение функции митохондрий и нарушение нервно-мышечного соединения, вызывающее саркопению у крыс », Mol Cell Biol , 33: 194–212, 2013.
  6. A. Pannérec et al., «Надежная нервно-мышечная система защищает скелетные мышцы крысы и человека от саркопении», Aging , 8: 712–28, 2016.
  7. E. Masiero et al., «Аутофагия необходима для поддерживать мышечную массу », Cell Metab , 10: 507–15, 2009.
  8. A. Besse-Patin et al.,« Влияние тренировок на выносливость на экспрессию миокинов в скелетных мышцах у мужчин с ожирением: определение апелина как нового миокина. , ” Int J Obes, 38: 707–13, 2014.
  9. N.А. Дуггал и др., «Основные характеристики иммунного старения, включая снижение выработки тимуса, улучшаются за счет высоких уровней физической активности во взрослом возрасте», Aging Cell , 17: e12750, 2018.
  10. C. Tezze et al., «Возрастная потеря OPA1 в мышцах влияет на мышечную массу, метаболический гомеостаз, системное воспаление и старение эпителия», Cell Metab , 25: 1374–89.e6, 2017.
  11. R. Sreekumar et al., «Gene профиль экспрессии в скелетных мышцах диабета 2 типа и эффект лечения инсулином », Diabetes , 51: 1913–20, 2002.
  12. S. Melov et al., «Упражнения с отягощениями обращают вспять старение скелетных мышц человека», PLOS ONE , 2: e465, 2007.
  13. F. Lo Verso et al., «Аутофагия не требуется для поддержания физических упражнений и Активность PRKAA1 / AMPK, но важна для предотвращения повреждения митохондрий во время физической активности », Autophagy , 10: 1883–94, 2014.
  14. C. He et al.,« Регулируемая BCL2 аутофагия, вызванная упражнениями, необходима для мышечной глюкозы. гомеостаз », Nature , 481: 511–15, 2012.
  15. C. Vinel et al., «Exerkine apelin обращает вспять возрастную саркопению», Nat Med , DOI: 1010.1038 / s41591-018-0131-6, 2018.
  16. P. Arnold et al., «Peripheral мышечная усталость у госпитализированных гериатрических пациентов связана с циркулирующими маркерами воспаления », Exp Gerontol , 95: 128–35, 2017.
  17. X. Wang et al.,« 60-минутная быстрая прогулка увеличивает индуцированное инсулином выведение глюкозы. но не влияет на чувствительность к инсулину печени и жировой ткани у пожилых женщин », J Appl Physiol , 114: 1563–68, 2013.

Исправление (4 сентября): в оригинальной версии этой истории неверно говорилось, что Джон Фолкнер работал с Хизер Карлсон в Мичиганском университете в конце 1980-х. Напротив, Брюс Карлсон был сотрудником Фолкнера. Кроме того, в онлайн-версии было показано изображение гладкой мускулатуры. Он был заменен на скелетную мышцу, чтобы более точно отразить содержание статьи. Наконец, было удалено вводящее в заблуждение высказывание о роли сателлитных клеток в старении мышц.Как количество, так и функция сателлитных клеток, вероятно, играют роль в сокращении мышц. Ученый сожалеет об ошибках.

.

Сохраните мышечную массу - Harvard Health

перейти к содержанию
  • Поиск
  • Корзина
  • Админ
ТЕМЫ ЗДОРОВЬЯ ▼

Просмотр по теме

  • Здоровье сердца «Назад
    • Артериальное давление
    • Холестерин
    • Заболевание коронарной артерии
    • Сердечный приступ
    • Сердечная недостаточность
    • Сердечные препараты
    • Ход
  • Разум и настроение «Назад
    • Наркомания
    • СДВГ для взрослых и детей
    • Болезнь Альцгеймера и деменция
    • Беспокойство
    • Депрессия
    • Улучшение памяти
    • Психическое здоровье
    • Позитивная психология
    • Напряжение
  • Боль «Назад
    • Артрит
    • Боль в спине
    • Головная боль
    • Замена сустава
    • Другая боль
  • Оставаться здоровым «Назад
    • Старение
    • Баланс и мобильность
    • Диета и похудание
    • Энергия и усталость
    • Физические упражнения и фитнес
    • Здоровое питание
    • Физическая активность
    • Скрининговые тесты для мужчин
    • Скрининговые тесты для женщин
    • Сон
  • Рак «Назад
    • Рак молочной железы
    • Колоректальный рак
    • Другие виды рака
    • Здоровье и болезни простаты
    • Рак кожи
  • Заболевания и состояния «Назад
    • Взрослые и дети СДВГ
    • Болезнь Альцгеймера и деменция
    • Диабет
    • Здоровье пищеварительной системы
    • Болезнь сердца
    • Другие болезни и состояния
    • Остеопороз
    • Ход
    • Заболевания щитовидной железы
  • Здоровье мужчины «Назад
    • Контроль рождаемости
    • Эректильная дисфункция
    • Физические упражнения и фитнес
    • Здоровое питание
    • Сексуальное здоровье мужчин
    • Рак простаты
    • Здоровье и болезни простаты
    • Скрининговые тесты для мужчин
  • Женское здоровье «Назад
    • Контроль рождаемости
    • Здоровье и болезни груди
    • Физические упражнения и фитнес
    • Здоровое питание
    • Менопауза
    • Остеопороз
    • Беременность
    • Скрининговые тесты для женщин
    • Сексуальное здоровье женщин
  • Детское Здоровье «Назад
    • Взрослые и дети СДВГ
    • Аутизм
    • Основные этапы развития
    • Нарушения обучаемости
.

Смотрите также